Правила и алгоритм расчета заземляющих устройств

Система заземления обеспечивает безопасность жильцов и бесперебойное функционирование электробытовой техники. Заземление предотвращает поражение током в случае утечек электричества на нетоковедущие элементы из металла, возникающих при повреждении изоляции. Создание системы безопасности — ответственное мероприятие, поэтому перед его проведением необходимо произвести расчет заземления.

Естественное заземление

Во времена, когда перечень электробытовой техники в жилище ограничивался одним телевизором, холодильником и стиральной машиной, заземляющие устройства использовались редко. Защита от утечки тока возлагалась на естественные заземлители, такие как:

  • неизолированные металлические трубы,
  • обсадка водяных скважин,
  • элементы металлических заборов, уличные фонари,
  • оплетка кабельных сетей,
  • стальные элементы фундаментов, колонн.

Использование обсадной скважины в качестве естественного заземлителя

Лучший вариант естественного заземления — водопроводная магистраль из стали. За счет своей большой длины водопроводы сводят к минимуму сопротивление току растекания. Эффективность водопроводов достигается еще и благодаря их прокладке ниже уровня сезонного промерзания, а потому на их защитные качества не влияют ни жара, ни холод.

Металлические элементы подземных железобетонных изделий подходят для заземлительной системы, если соответствуют следующим требованиям:

  • имеется достаточный (по нормам Правил устройства электроустановок) контакт с глинистой, супесчаной или влажной песчаной основой,
  • при строительстве фундамента арматура на двух или более участках была выведена наружу,
  • металлические элементы имеют сварные соединения,
  • сопротивление арматуры соответствует регламенту ПУЭ,
  • имеется электросвязь с шиной заземления.

Обратите внимание! Из всего перечня указанных выше естественных заземлений рассчитываются только подземные железобетонные конструкции.

Эффективность функционирования естественного заземления устанавливается на основе измерений, проведенных уполномоченным лицом (представителем Энергонадзора). На основе проведенных замеров специалист даст рекомендации относительно необходимости установки дополнительного контура к естественному контуру заземления. Если естественная защита отвечает требованиям нормативов, Правила устройства электроустановки указывают на нецелесообразность дополнительного заземления.

Железобетонный фундамент в качестве естественного заземлителя

Расчеты для устройства искусственного заземления

Абсолютно точный расчет заземления произвести практически невозможно. Даже профессиональные проектировщики оперируют приблизительным количеством электродов и дистанциями между ними.

Причина сложности расчетов состоит в большом количестве внешних факторов, каждый из которых оказывает существенное влияние на систему. К примеру, нельзя предсказать точный уровень влажности, не всегда известна фактическая плотность грунта, его удельное сопротивление и так далее. В связи с неполной определенностью вводных данных итоговое сопротивление организованного контура заземления в конечном счете отличается от базового значения.

Разницу в проектируемых и реальных показателях нивелируют за счет монтажа дополнительных электродов или путем увеличения длины стержней. Тем не менее, предварительные расчеты важны, так как позволяют:

  • отказаться от лишних трат (или хотя бы уменьшить их) на покупку материалов, на земляные работы,
  • подобрать наиболее подходящую конфигурацию заземлительной системы,
  • выбрать правильный план действий.

Расчет контура заземления для защиты электрооборудования

Для облегчения расчетов существует разнообразное программное обеспечение. Однако чтобы разобраться в их работе, необходимы определенные познания о принципах и характере вычислений.

Компоненты защиты

Защитное заземление включает электроды, установленные в землю и соединенные электросвязью с заземляющей шиной.

В системе имеются такие элементы:

  1. Металлические стержни. Один или несколько металлических стержней направляют ток растекания в грунт. Обычно в качестве электродов используют отрезки длинномерного металла (трубы, уголок, круглые металлические изделия). В некоторых случаях используется листовая сталь.
  2. Металлический проводник, объединяющий несколько заземлителей в единую систему. Обычно в этом качестве используют установленный по горизонтали проводник в виде уголка, прута или полосы. Металлическую связь приваривают к концам закопанных в землю электродов.
  3. Проводник, соединяющий находящийся в грунте заземлитель с шиной, которая имеет связь с защищаемым оборудованием.

Два последних элемента называются одинаково — заземляющий проводник. Оба элемента выполняют идентичную функцию. Различие кроется в том, что металлосвязь находится в грунте, а проводник подключения заземления к шине располагается на поверхности. В связи с этим к проводникам предъявляются неодинаковые требования по устойчивости к коррозии.

Устройство треугольного контура заземления

Принципы и правила вычислений

Грунт — один из составляющих элементов системы заземления. Его параметры имеют важное значение и участвуют в расчетах так же, как и длина металлических деталей.

При проведении расчетов используют формулы, указанные в Правилах устройства электроустановок. Применяются переменные данные, собираемые установщиком системы, и постоянные параметры (есть в таблицах). К постоянным данным относится, например, сопротивление грунта.

Определение подходящего контура

Прежде всего необходимо выбрать форму контура. Конструкция обычно выполняется в виде определенной геометрической фигуры или простой линии. Выбор конкретной конфигурации зависит от размеров и формы участка.

Проще всего реализовать линейную схему, так как для монтажа электродов понадобится выкопать лишь одну прямую траншею. Однако установленные в линию электроды станут экранировать, что ухудшит положение с током растекания. В связи с этим при расчетах линейного заземления применяется поправочный коэффициент.

Наиболее распространенной схемой для создания защитного заземления выступает треугольная форма контура. По вершинам геометрической фигуры устанавливают электроды. Металлические штыри должны быть достаточно отдалены друг от друга, чтобы не препятствовать рассеиванию поступающих в них токов. Для обустройства защитной системы частного дома считается достаточным три электрода. Для организации эффективной защиты необходимо еще и правильно подобрать длину стержней.

Выбор схемы заземляющего контура

Расчет параметров проводников

Длина металлических стержней важна, поскольку влияет на эффективность системы защиты. Имеет значение и длина элементов металлосвязи. Кроме того, от длины металлических деталей зависят расход материала и общие затраты на обустройство заземления.

Сопротивление вертикальных электродов определяется их длиной. Другой параметр — поперечные размеры — не влияет существенным образом на качество защиты. И все же сечение проводников регулируется Правилами устройства электроустановок, так как данная характеристика важна с точки зрения устойчивости к коррозии (электроды должны служить 5 – 10 лет).

При соблюдении прочих условий существует правило: чем больше металлических изделий участвует в схеме, тем выше безопасность контура. Работы по организации заземления довольно трудоемкие: чем больше заземлителей, тем больше земляных работ, чем длиннее стержни, тем глубже их нужно забивать.

Расчет количества вертикальных заземлителей

Что выбрать: количество электродов или их длину — решать организатору работ. Однако на этот счет есть определенные правила:

  1. Стержни необходимо устанавливать ниже горизонта сезонного промерзания по крайней мере на 50 сантиметров. Это позволит отстранить сезонные факторы от влияния на эффективность системы.
  2. Дистанция между вертикально установленными заземлителями. Расстояние определяется конфигурацией контура и длиной стержней. Для выбора правильной дистанции нужно воспользоваться соответствующей справочной таблицей.

Нарезанный металлопрокат вбивают в грунт на 2,5 – 3 метра при помощи кувалды. Это довольно трудоемкая задача, даже если учесть, что из указанной величины нужно вычесть примерно 70 сантиметров глубины траншеи.

Экономное расходование материала

Выбор оптимальной схемы заземлителя

Так как сечение металла — не самый важный параметр, рекомендуется приобретать материал с наименьшей площадью сечения. Однако при этом нужно оставаться в пределах минимально рекомендуемых значений. Наиболее экономичные (но способные выдержать удары кувалды) варианты металлоизделий:

  • трубы диаметром 32 миллиметра и толщиной стенок от 3 миллиметров,
  • уголок равнополочный (сторона — 50 или 60 миллиметров, толщина — 4 или 5 миллиметров),
  • круглая сталь (диаметр от 12 до 16 миллиметров).

В качестве металлосвязи оптимальным выбором станет полоса из стали толщиной 4 миллиметра. В качестве альтернативы подойдет 6-миллиметровый стальной прут.

Обратите внимание! Горизонтальные стержни приваривают к вершинам электродов. Поэтому к расчетной дистанции между электродами следует добавить еще 18 – 23 сантиметра.

Наружный участок заземления можно изготовить из 4-миллиметровой полосы (ширина — 12 миллиметров).

Экономичный вариант устройства заземляющего контура

Формулы для расчетов

Далее расскажем о том, как рассчитать заземление по формулам, и приведем пример расчетов. Выбираем формулу, исходя из типа заземлителей.

Формула для расчета сопротивления системы заземления току растекания

Подойдет универсальная формула, с помощью которой рассчитывают сопротивление вертикального электрода.

Формула расчета вертикального заземлителя

При проведении вычислений не обойтись без справочных таблиц, где указаны примерные значения. Данные параметры определяются составом грунта, его средней плотностью, способностью задерживать воду, климатическим поясом.

Устанавливаем нужное количество стержней, не принимая во внимание показатель сопротивления горизонтального проводника.

Формула для расчета числа вертикальных электродов

Вычисляем данные по горизонтальной части заземлительной системы.

Вычисление параметров заземляющего проводника

Определяем уровень сопротивления вертикального стержня на основе показателя сопротивления заземлителя горизонтального типа.

Определение уровня сопротивления вертикального электрода

На основании полученных результатов приобретаем нужное количество материала и планируем начало работ по созданию системы заземления.

Заключение

Поскольку самое высокое сопротивление грунта отмечается в сухое и морозное время, организацию заземлительной системы лучше всего запланировать именно на этот период. В среднем сооружение заземления занимает 1 – 3 рабочих дня.

До засыпки траншеи землей следует проверить работоспособность заземлительных устройств. Оптимальная среда для проверки должна быть как можно более сухой, в почве не должно быть много влаги. Поскольку зимы не всегда бывают бесснежными, проще всего заняться строительством системы заземления в летний период.

Рейтинг
( 1 оценка, среднее 1 из 5 )
Понравилась статья? Поделиться с друзьями:
Iqelectro.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: