Преимущества и недостатки последовательного и параллельного подключения проводников

Каждое помещение имеет несколько точек электропитания для работы различных приборов. Техника работает посредством электрического тока, который проводят через специально установленные кабели – проводники. От качества элементов сети и способа соединения зависит качество напряжения, стабильность и безопасность использования. Существует два основных метода – параллельное и последовательное. Каждое имеет свои преимущества и недостатки, с которыми лучше ознакомиться предварительно.

Основные электрические величины цепи

Чтобы разобраться в нюансах подключения и соединения электрических проводников, необходимо выяснить основные моменты и величины токовых цепей. Электроцепь – это не самостоятельное устройство, а совокупность нескольких механизмов и элементов, используемых для проведения электрического тока. Основные детали:

  • источники: трансформаторы, электроустановки, батарейки, генераторы, аккумуляторы и другие,
  • приемники: непосредственно техника – лампы, двигатели, нагреватели, катушки индуктивности, подобные,
  • промежуточные звенья: провода, устройства.

Основными величинами, с помощью которых устанавливают свойства электрических цепей, являются напряжение, сопротивление и ток. В проводниках электричество представляет множество двигающихся в заданном направлении электрических зарядов. Под током в сети подразумевают интенсивность или силу, которые измеряются числом зарядов одновременно проходящих через поперечное сечение проводника.

Напряжение – это то количество электрической энергии, которое необходимо для перемещения одного заряда от одного пункта до другого. Выражается в Вольтах. Сопротивление – это силы, воздействующие на поток электрических зарядов во время движения проводников. Записывается в Омах.

Взаимная зависимость электрических величин

Связь между величинами в электрической цепи объясняется законами электротехники. Первый – Закон Ома. Открыт и подтвержден Георгом Симоном Омом еще в 1827 году. Заключается в том, что величина интенсивности тока прямо пропорциональна величине напряжения в кабеле проводника. Закон Ома позволяет быстро провести анализ электрической цепи и оценить ее возможности, пределы.

Кроме основного правила в электротехнике используют Законы Кирхгофа. Один гласит, что сумма токов на входе равна сумме токов на выходе. Второй – что сумма ЭДС равна сумме падений напряжения на внутренних элементах электрического контура.

Законы Кирхгофа позволяют установить соотношение между токами, проходящими через узлы электрической проводки, и токами на входе в контурную цепь. Анализ и расчеты проводятся по следующему алгоритму:

  • Устанавливается общее число ветвей и узлов конкретной электрической сети.
  • В произвольном порядке выбираются условно-положительные направления токов в проводке, на схеме проставляются соответствующие отметки.
  • Для получения уравнения отмечаются в свободном порядке положительные направления обхода контура,
  • Составляется уравнение по правилам Кирхгофа для получения результата.



Решение построенных задач позволит определить количество и значение токов в конкретной электрической цепи.

При помощи законов Ома и Кирхгофа, электрики оценивают состояние сети, ее работоспособность и мощность. На практике редко используют формулы вживую. Практикующие электрики ориентируются в характеристиках более свободно. Начинающим монтажерам может показаться сложным единовременное ориентирование во всех показателях и взаимосвязях, удобнее иметь некоторые вспомогательные материалы под рукой.

Параллельное соединение проводников

Соединение кабелей в электропроводке возможно тремя вариантами: параллельно, последовательно, смешанно. Первый метод – параллельное подключение – заключается в том, что проводники соединяются между собой в начальной и конечной точках. Получается, что нагрузки с обоих концов сливаются, а напряжение получается параллельным. В одной электрической сети параллельно могут быть соединены два, три и больше кабелей.

Чтобы проверить интенсивность прохождения тока при таком подключении, в параллельную сеть подключают две лампочки (показатели должны быть идентичными – сопротивление, напряжение). Чтобы произвести испытание и проконтролировать результат, к каждой подводят амперметр (устройство, измеряющее силу тока). Третий прибор запитывают на сеть в целом, чтобы увидеть показатель на всей сети. Дополнительные элементы – питание, ключ.

После того как схема собрана, ключом активируют питание и сравнивают результаты на амперметрах. На общем показатель должен быть равен сумме двух, подключенных к лампам. В данном случае считается, что система работает исправно – напряжение при параллельном соединении подается в нормальном режиме.

Если на одном участке произойдет замыкание, лампочки останутся в рабочем состоянии. Ток поступает по замкнутому контуру с двух сторон. Ремонт будет необходим в любом случае, но свет и питание останутся.

Если к указанной системе подключить вольтметр, можно оценить показатели сопротивления сети. Эквивалентный показатель укажет на уровень сопротивления сети при той же интенсивности тока.

Последовательное соединение проводников

Следующая схема подключения – последовательное соединение проводников в цепи – подразумевает врезку каждого прибора в порядке очередности (один за другим). Интенсивность силы проходящего тока через каждый элемент питания (лампочка, прибор) будет одинаковой. При этом напряжение при последовательном соединении складывается из показателей напряжения с каждого участка (получается суммарным).

Значение сопротивления может изменяться. Если изменится нагрузка на одном из мест последовательного подключения, изменится и уровень сопротивления. Как следствие, поменяется показатель тока.

Основной недостаток такой электрической цепи заключается в том, что если на одном из участков произойдет сбой (поломка, замыкание), следующие за ним элементы перестанут функционировать. Наглядно схема соединения представлена в обычных новогодних гирляндах – когда ломается один контакт или провод в любом месте, перестают работать остальные.

При последовательном подключении проводников конец одного кабеля подсоединяется к началу следующего. Ключевое отличие электроцепи – отсутствие разветвлений, через участки проходит один электроток. При этом разность потенциалов резистора объясняется совокупным напряжением по каждому отдельному резистору (контакту, участку, точке питания).

Законы последовательного и параллельного соединения проводников

Примеры схем соединения розеток

К правилам, объясняющим «поведение» проводников при последовательном и параллельном соединениях, относятся основные законы электротехники и некоторые особенности. Последние не всегда бывают очевидны новичкам, поэтому их разбирают как отдельные законы. При работе со схемами проводников учитывают следующее:

  • Последовательное подключение подразумевает одинаковые показатели токов на каждом участке.
  • Закон Ома для каждого типа соединения имеет свое значение. Например, при последовательном способе включения напряжение будет равно сумме напряжений всех участков сети.
  • Общее сопротивление электрической цепи при поочередном соединении будет равно сумме значений сопротивления элементов, не зависит от числа проводников и точек питания.
  • Параллельный метод – напряжение электроцепи равно напряжению на каждом отдельном элементе, не суммируется, а остается одинаковым.
  • Сила тока для данного способа соединения определяется суммой значений токов участков подключения.

Данные законы используются при построении схемы электропроводки в помещении.

Чтобы оптимизировать нагрузку, не создавать чрезмерного напряжения в отдельных частях, проверяют оптимальность каждого типа соединения в конкретной ситуации.

Смешанное соединение проводников

Смешанное соединение проводников

Как правило, в электпроводке используют параллельное и последовательное соединения одновременно. Такой способ подключения проводов называется смешанным или комбинированным. При построении первоначальной схемы питания в помещении, где указывается число и расположения точек питания (розеток, выключателей, трансформаторов), учитывают необходимость каждого из типов подключения на разных участках.

Электрическая проводка редко состоит из простых элементов. Зачастую получается сложная схема из множества разных участков и соединений. Поэтому при составлении плана важно разобраться в преимуществах и недостатках типов подсоединения проводов, чтобы оптимально использовать каждый. Для этого схему разбивают по участкам и в каждом конкретном случае подбирают собственный метод врезки проводов.

Как выбрать тип подключения

Распределительная коробка

Потребляемая электрическая энергия в квартиру поступает от общедомового электрощитка. Количество израсходованного тока измеряется счетчиком. Вводный провод в помещение имеет большое сечение и является основным «поставщиком» электричества в квартиру. Следующие берут с меньшими показателями, так как нагрузка на них снижается за счет распределения.

Основной кабель заводится в специальную распределительную коробку, от которой делают разводку в комнаты и санузлы. На этом этапе необходимо определить, какой тип соединения проводов будет использован: последовательный, параллельный, комбинированный.

Категорического запрета на построение проводки в квартире тем или иным способом нет. Однако следует учитывать практическое применение каждой цепи, недостатки, преимущества и возможности.

Самым подходящим и часто используемым вариантом является смешанное соединение проводов. От общего щитка к распредкоробке подводится кабель, затем в параллельную сеть замыкается несколько распределительных узлов (в каждом помещении). Далее – в комнатах точки питания соединяются последовательно.

Последовательное включение элементов позволяет существенно сэкономить на материалах при монтаже электропроводки. Поэтому несмотря на определенные недостатки метод используют в небольших помещениях. На малых участках проще выявить место поломки, нежели в квартире в целом.

Параллельное подключение розеток

Параллельное подключение визуально представляет кольцо из проводов. Если на одном участке произошел сбой, ток не прекращает поступать – подача происходит с другой стороны цепи. Однако для такого типа соединения требуется проложить значительное количество кабеля, что не всегда удобно.

В некоторых ситуациях целесообразно использовать только последовательное соединение проводов. Например, в длинных коридорах необходимо одновременно включать и выключать несколько осветительных приборов разом. Шлейфовое подключение в данной ситуации оптимально. Сложность замены лампочки или узла на участке зависит от типа электропроводки и отделки помещения.

При составлении схемы электрической сети в квартире и покупке лампочек для осветительных приборов важно учитывать уровень напряжения. Последовательное соединение означает, что напряжение делится поровну на количество лампочек. Например, если устанавливают две подряд, значение на каждой будет по 110В, а не 220В.

При покупке вторичного жилья следует убедиться, что в технической документации присутствует действующая схема электропроводки. Наличие плана позволит безопасно сделать ремонт и корректно подключить новые точки питания, лампы.

Электромонтажники в сложных схемах всегда используют оба типа соединения. С одной стороны, такой подход снижает общее количество расходных материалов. С другой, позволяет в каждом конкретном помещении реализовать преимущества обоих методов врезки кабеля. При самостоятельном подключении необходимо детально разобраться в аспектах каждого вида, по возможности – проконсультироваться с мастером. В противном случае, велика вероятность некорректного соединения и сбоев в работе.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Iqelectro.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: